

## **Product Data Sheet**

Catalogue No. Qty:

AB0306-100  $300 \,\mu g$ 

## Anti-ATP1a1

**Source:** Goat

**General description:** Goat polyclonal antibody to ATP1a1. Na+/K+ -ATPase is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). This protein is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane.

**Alternative names:** ATPase Na+/K+ transporting subunit alpha 1 and CMT2DD antibody.

**Form:** ?Polyclonal antibody supplied as a  $100 \mu l$  (3 mg/ml) aliquot in PBS, 20% glycerol and 0.05% sodium azide. This antibody is epitope-affinity purified from goat antiserum.

**Immunogen:** Purified recombinant peptide derived from within residues 100 aa to N-terminus of human ATP1a1 produced in E. coli.

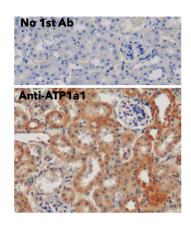
**Specificity:** Detects endogenous levels of ATP1a1 by Western blot in the whole cell lysates (HeLa, LS174T, SKOV3, etc.).

Reactivity: Reacts with Human, Rat, Mouse, Monkey and Canine proteins

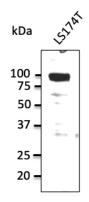
| Sample | WB  | IHC (F) | IHC (P) | IF | ELISA |
|--------|-----|---------|---------|----|-------|
| Human  | +++ | +++     | +++     | ND | ND    |
| Rat    | +++ | +++     | +++     | ND | ND    |
| Mouse  | +++ | +++     | +++     | ND | ND    |
| Canine | +++ | +++     | +++     | ND | ND    |
| Monkey | +++ | +++     | +++     | ND | ND    |

+++ excellent, ++ good, + poor, ND not determined

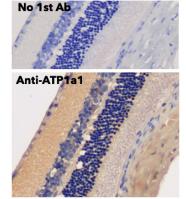
## **Usage:**


WB: 1:500-1:2,000 IHC (F): 1:250-1:1,000 IHC (P): 1:250-1:1,000

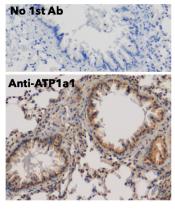
**Storage:** For continuous use, store at 2-8 C for one-two days. For extended storage, store in -20 C freezer. Working dilution samples should be discarded if not used within 12 hours.

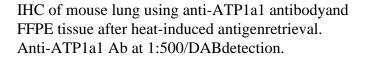

**Special instructions:** The antibody solution should be gently mixed before use..

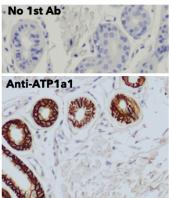
## **References:**


- 1. Ferreira JV, Rosa Soares A, Ramalho JS, et al. PLoS One 2019 Oct. PMID: 31613922
- 2. Ferreira JV, Soares AR, Ramalho J, et al. Sci Adv 2022 Mar PMID: 35333565

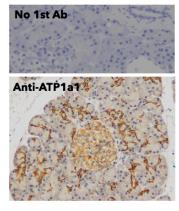



IHC of mouse kidney using anti-ATP1a1 antibody and FFPE tissue after heat-induced antigen retrieval. Anti-ATP1a1 Ab at 1:500/DAB detection.

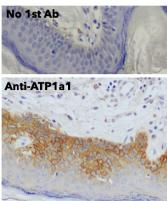




Endogenous ATP1a1 detected with at 1/1,000 dilution; lysate at 50 µg per lane and rabbit polyclonal to goat IgG (HRP) at 1/10,000 dilution;




IHC of rat eye using anti-ATP1a1 antibody and FFPE tissue after heat-induced antigen retrieval. Anti-ATP1a1 Ab at 1:500/DAB detection.








IHC of human skin using anti-ATP1a1 antibody and FFPE tissue after heat-induced antigen retrieval. Anti-ATP1a1 Ab at 1:500/DAB detection.



IHC of human pancreas using anti-ATP1a1 antibody and FFPE tissue after heat-induced antigen retrieval. Anti-ATP1a1 Ab at 1:500/DAB detection.



IHC of human skin using anti-ATP1a1 antibody and FFPE tissue after heat-induced antigen retrieval. Anti-ATP1a1 Ab at 1:500/DAB detection.

For research use only, not for diagnostic use

| In order to produce high specific antibodies SICGEN has invested a this information by not publishing it on the website. However, these | lot of time and effort into selecting immunogen sequences. SICGEN has decided to protect sequences are available on request. |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |
|                                                                                                                                         |                                                                                                                              |